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LEAST-INDEX RESOLUTION OF DEGENERACY IN QUADRATIC PROGRAMMING

by
Yow-Yieh CHANG and Richard W. COTTLE

Department of Operations Research
Stanford University

ABSTRACT

In this study, we combine least-index pivot selection rules with
Keller's algorithms for quadratic programming to obtain a finite method
for processing degenerate problems.

1. Introduction.

Degeneracy is a theoretically troublesome phenomenon in the analysis
of simplicial methods for linear programming although, according to
folklore, it is not a serious impediment to practical computation [7, p. 231}.
For the record, a basic solution to a linear programming problem is said
[7, p. 81] to be degenerate if at least one of the basic (i.e. dependent)
variables equals 0., Even if the initial basic solution is non-degenerate,
an adjacent extreme point algorithm such as Dantzig's simplex method may
select degenerate basic solutions as a consequence of ties in the
minimum ratio test used to determine the exiting basic variable, This in
turn can lead to the phenomenon known as circling (alias cyling): a
sequence of bases which (after finitely many steps) repeats itself. De-
generacy per se is not the problem; but when it is present, circling is
a possibility and must be avoided if the simplex method and procedures like
it are to work and be finite. The "degeneracy problem" refers to the

difficulties associated with circling.
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Until quite recently, the theoretical procedures available for
handling the degeneracy problem were Charnes' perturbation technique [ 3],
the lexicographic method of Dantzig, Orden and Wolfe [ 8], the ad hoc method
of Wolfe [15]. We shall not attempt to review these technical procedures
here, but simply remark that their actual implementations are commonly be-
lieved to entail storage requirements and computational effort out of all
proportion to the need for them. In 1976, Bland [ 2] announced a finite
version of the simplex method based upon a double least-index pivot selection
rule. In Bland's method, the entering basic variable is chosen as the
candidate with the smallest index. The variable it replaces (if any) is
determined by the usual minimum ratio test with ties broken according to
the least-index rule. The method seems so natural, it is difficult to
understand why it was not published earlier.

At this point, Bland's contribution is of greater importance to linear
programming theory than practice. A study by Avis and Chvatal [ 1] shows
that the method (in the form sketched above) is less efficient than those
which choose the entering variable by paying more attention to decreasing the
objective function. Avis and Chvatal found, however, that prior arrangement
of the variables may help to bring about greater efficiency as compared with
the other methods. Another possible shortcoming of Bland's method may lie
in its disregard of the magnitude of the pivot entry. Recognizing these
objections, we regard Bland's least-index rule as a significant contribution
to LP theory and hope that it will develop into a viable practical approach

as well.
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In this paper we demonstrate that Bland's least-index pivot selection
rules can be applied to handle the degeneracy problem in the Dantzig/van de
Panne-Whinston/Keller algorithm for quadratic programming. (See [6 ], (7],
(13], [9 ].) In a nutshell, what is shown is that by using Bland's least-
index rules in Keller's algorithm, one can prevent circling and reach one
of the terminal forms after finitely many pivot steps. From this one
either has knowledge that the objective function is unbounded below or else

a solution of the Kuhn-Tucker conditions.
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2, Quadratic programming

In this section we consider the application of Bland's least index
rule to the symmetric Dantzig/van de Panne-Whinston/Keller quadratic
programming algorithm. This procedure in its most general form (given
by Keller) aims to find a local minimum in a nonconvex quadratic program-

ming problem.

2,1 Statement of the problem.

We express the quadratic programming problem in the form

(1) minimize Q(x) = ch + kxTDx
subject to Ax < b
x > 0

The matrix D is always (without loss of generality) assumed symmetric.
When we speak of convex quadratic programming, we refer to the case where
D is positive semi-definite; but for the moment this is not assumed.

The approach taken in the Dantzig/van de Panne-Whinston/Keller
algorithms for solving (1) is to find a solution of its Kuhn-Tucker con-

ditions, i.e. its necessary conditions of optimality, namely

(2) u=c+ Dx+ ATy

v=D>b - Ax
x>0,y>0,u>0,v>0

xru -0, yTv =0

In the convex quadratic programming case these conditions are also sufficient




for the optimality of x. TIn the nonconvex case, they are not in gencral
sufficient, even for a local minimum,

The method of Keller (which extends those of Dantzig and van de Panne~-
Whinston) {is capable of finding a local minimum of a nondegenerate non-
convex QP {n finitely many steps. This is done by obtaining a suitable
solution of (2). We show here that by using a natural adaptation of Bland's
least-index rule we can dispense with the nondegeneracy assumption and find

a solution of (2), again in finitely many steps.

2.2 Bland's least-index rule for LP.

In 1976, R.G. Bland | 2] showed that a certain simple and natural
pivot selection rule never leads to circling. His pivoting rule is a
refinement of the simplex rule obtained by imposing the following restric-
tions:

(a) among all the candidates to enter the basic set of variables,

select the nonbasic variable having the lowest index.

(b) among all candidates to leave the basic set, select the basic

variable having the lowest index.

It is well to understand what is meant by these statements. We
imagine the linear program to be expressed in the canonical simplex tableau

consisting of m+ 1 linearly independant rows and n + 2 columns;

Basic variables X0 X . - . X 1
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It is assumed that Bo =0, 1¢ B1 <€n for i =1, 0o, m , and the

matrix formed from the columns headed by Xg » Xg 3 sees Xp constitutes
0 1 m

an identity matrix of order (m + 1). 1In particular, the columns

associated with xB1 has a 1 inrow i and 0 elsewhere.

The least-index selection rule for choosing the incoming variable is
clear although it differs from the customary one. We want to stress that in
choosing the exiting basic variable one uses the usual candidacy rule and
breaks ties according to the least index of the affected basic variables
rather than by the least row number of such variables. To be precise,

suppose X is the incoming variable. Then the exiting basic variable

(if any) is the one whose index (subscript) satisfies

b
(3) B = min BQ: ag. > 0 and _!_ = min ‘ CRE T
¥ ¢ %s |

The pivot element is then a g The important point is that the minimization

in (3) is over B rather than ¢,

2.3 Keller's algorithm.

In describing Keller's algorithm, it is convenient to introduce a change

of notation in (2). Suppose A € R™ ", TInitially, we define I = {1, ..., n} ,

J=1{n+1, ..., n+m}, and then put

(4) xI-xt XJ-VD yI'll. y‘y"y

T — h i ey N A B e s A A e R a2
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Accordingly, (2) can be replaced by the bisymmetric schema:

(5) J
0w o]t bt
¥r = 4% D AT

X, = b -A 0

The variable 8 is related to the objective function through the

equation

T T
(6) $ =2 %y -2,

This equation is a consequence of two other equations represented in (5).

j Actually, Keller's method works with the slightly more general schema

%0 A X ¥
0 = |2k cT -bT
yp = |e| » A

xJ - b -A E

in which E is symmetric and positive semi-definite and x 1is a constant.

(In our original schema (5) we have E = 0 and x = 0,) The most important
reason for working with such a schema is that one encounters this type of
format in subsequent principal pivotal transforms of (5), so one might as

well regard it as given from the start. A second rationale for (7) is that
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it corresponds to the one used for symmetric dual quadratic programs [ 4].
In such a schema, we regard the variables Yy (1€ 7) and x () €EJ) as

]

basic. The variables x (1€7) and vy (j €J) are then non-basic.

B J

It is helpful to notice that the entries in the schema can be considered as

partial derivatives. For example

ayilaxj = dij

It is assumed that b > 0. This amounts to a (primal) feasibility
condition. In a given instance, if b 1is not nonnegative one can as an
initialization step execute the Phase 1 procedure of LP to make it so or
else determine the infeasibility of the constraints. The remaining steps

of the original method for the nondegenerate case run as follows:

Step 1. If all basic y-variables are nonnegative, stop. A local minimum has
has been found. Otherwise choose a negative y-component, say Yg» 88 the
"distinguished variable",

Step 2. If 3ys/3xs % 0 go to Step 3. Otherwise, determine the "blocking

variable'", i.e. the basic variable (either Yg OF Xi j € J) which reaches

3
the value O first as Xy is increased from O,
& If Ve is the blocking variable, perform the in-pivot (ys. xs)
by which . and x  are exchanged. Replace ¢ by J U {s} and I by
I - {s}. Return to Step 1l.
b. I1f x, is the blocking variable and ;\xtlayt > 0 then perform the

out-pivot (xt, yt) by which X, and Y, are exchanged. Replace J by

J - {t} and I by I U({t}. Repeat Step 2 (with Xg still the driving
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variable). If th/Dyt = 0, then perform the exchange pivot (xt, xs),

(ys. yt) through which X, and x, are exchanged and & and y, are
exchanged. Replace J by (J/ - {t))U{s) and I by (I - {s})U{t}.
Return to Step 1.

Step 3. Determine whether x_ is blocked. If ijlaxs > 0 for all

j €J then X is unblocked. Stop, since Q = -», Otherwise Xy is
blocked. 1If ;\xt/(\yt > 0, perform the out-pivot (xt, yt) ; replace
by ¢ - {t} and I by I U {t}. Return to Step 2. If Sxtli)yt =0,

perform the exchange pivot (xt. xq) , (yq, yt) ; replace J by

(/-{t}HVU(s} and I by (- {s))U{t}l. Return to Step 1.

We do not intend to justify the method or even discuss it at length.

For this one should see | 9). However, we do wish to draw the reader's

attention to some of its salient features.

1. The nondegeneracy assumption implies that there is always at most one
blocking variable.

2. The method uses only principal pivots of order 1 (in-pivots and out-
pivots) or order 2 (exchange pivots).

3. The property of bisymmetry is preserved by principal pivoting (regard-
less of the order). This is proved iv [14].

4. The nonnegativity of the x-variables is preserved throughout the
procedure.

5. Given the current index set « the principal submatrix E corresponding

to the rows and columns indexed by « 1is always positive semi-definite

and its nullity equals that of the original, E.

6. According to quadratic programming theory, a Kuhn-Tucker point is a local




minimum in the nondegenerate case provided E is positive semi-

definite. However, in the degenerate case, more than just the positive
semi-definiteness of E is needed. In effect, a type oi copositivity
condition is required. (See [10] and [11]). Unfortunately Keller's
method makes no provision for this; hence we make no claim tha‘ the
modified Keller method described below actually yields a local minimum
in the degenerate case. Nevertheless, the method leads in finitely mauy
steps to an indication of unboundedness or else to a solution of the
Kuhn-Tucker conditions, and in the case of convex quadratic programmiug,

this is enough for global optimality.

2.4 Finiteness of Keller's method with the least index rule.

We now give a modification of Keller's algorithm and prove its
finiteness without recourse to a nondegeneracy assumption. To accomplish
this, we introduce a refinement of Keller's algorithm which imposes the

following double least-index rule:

(1) In Step 1, choose the distinguished variable yg S° that

s=min {1 €I: y, <0}

(ii) In Steps 2(b) and 3, choose the blocking variable x, so that

b b
t = min ‘j € J: -a, < 0 and —L « nin it P k €J, -a,g < OI
l is ayg a,q s ‘

10
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In Step 2, there could be a "tie" between . & and X, for

blocking. The statement of Step 2 is intended to mean that under
these circumstances, one should chocse y_ as the blocking variable.

This would decrease the objective function value,

In Keller's method, each return to Step 1 completes a major cycle.

Lemma 1. Each major cycle of Keller's algorithm (with or without the

least index rule) is finite.

Proof. The pivots in Keller's method are of three types: in-pivots,
out-pivots, and exchange-pivots. Both in-pivots and exchange-pivots lead
back to Step 1, hence each completes a major cycle. Each out-pivot

reduces the cardinality of « by 1, so there can be only finitely many

|
|
‘j
?@1
:
1
?

out-pivots within a major cycle. (J

Lemma 2. If circling occurs in Keller's algorithm, then during circling,

only exchange-pivots are used.

Proof. By Lemma 1, if circling occurs, there must be infinitely many
returns to the same complementary basis in terms of which the schema is
uniquely determined. Keller shows that regardless of whether degeneracy
is present, the value of 0 is nonincreasing under all steps of the
algorithm., Hence during circling, 0 must be fixed. This implies

there can be no in-pivots during circling, for these always decrease the

value of 8, Now it remains to show that during circling, there are no

out-pivots. To see this we note that each out-pivot increases the

cardinality of the index set  (corresponding to the basic y=-variables).

|
|
{
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Since exchange-pivots do not affect the cardinality of I and in-pivots
cannot occur by our previous argument, there can be no out-pivots
during circling. O

Suppose circling occurs during the execution of Keller's algorithm.
We know that each major cycle must be finite, so the only remaining
possibility is that there are infinitely many major cycles (returns
to Step 1). A circle begins at a complementary schema, a principal
pivotal transform of the original schema (7). Since non-terminal
principal transforms of (7) share its properties (bisysmmetry, positive
semi-definiteness of E, b > 0, ¢ * 0), we may assume for simplicity
that the circling starts at (7). The circling consists of a sequence
of (at least two) exchange pivots returning to (7). Assuming the
circling starts at (7) we focus attention on the variables actually

exchanged.

Definition. Let

K= {j €J: x, becomes nonbasic during circling}

3

Accordingly, by deleting from (7) those rows and columns j such that

i ¢ K, we obtain a subschema with much the same character, namely

(8)

0 = | 2¢ c -b

o

~ g s ks

e 1




Caution: In (8) and the lemma below, we indulge in an abuse of

notation. The symbols by » AK- » and ERX refer to those parts of

b, A, and E corresponding to the basic variables Xpo

Lemma 3. Under the assumptions made above,

(9 by=0 and Ep =0, E, =0

Proof. Let X be the first driving variable., Since this must lead
to an exchange-pivot, let X, be the blocking variable. Since we must
perform an exchange-pivot (rather than an out-pivot) we must have ett = 0.

This implies

E, =0, E =0

because E 1is symmetric and positive semi-definite. As a result of an
exchange=pivot, 2x becomes
e, 1 b d
Zed | ¢+ ==(c_+ tes

ts i O i,

Each of the summands within the square brackets is negative. Since
bt is nonnegative and ¢ does not change during circling, we must have
bt = 0. Under these circumstances, the entries of bx and EKK are not

affected by the exchange-pivot. Since each row indexed by k € XK {s

involved {n an exchange-pivot, the argument just given applies and

the proof is complete, )

4
1
1
|




Now we come to our result on quadratic programming.

Theorem 1. With the double least-index rule, Keller's algorithm is

finite.

Proof. If the method is not finite, there is a subschema of the form

(10) B % ¥y
0 = 2k cT 0

T

yI c D AK-

in which circling occurs. All of the transformations of this subschema
arise as exchange-pivots. The matrix D has no affect on the transforms

of ¢ and A Indeed c¢ and AK- would be transformed the same way

Ke*®
if D were the zero matrix. But when D = 0, we are just doing Bland's

refinement of the simplex method which is finite. O

Corollary. If circling occurs when Keller's method (without degeneracy
precautions) is applied to the quadratic program (1), then m > 2 and

m+ n > 6. The bounds are sharp,

Proof. The arguments given above imply the existence of a linear
program based on a subset of the variables in which circling occurs. But
Marshall and Suurballe [12] have shown that such an LP must have at least

two equations and at least six variables, Hence, m > 2 and m+n > 6.

14
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The bounds given by Marshall and Suurballe are sharp, so they must

be sharp here too. []

Example. The following minimal example is a modification of one

given in [12].

1 * X, - O Ys Yo
¢ «} 0 1 7 \ 2 0 0
y, = | -1 -1 0 0 0 /2 172
Y, 7 0 ol 0 0 =11/F 32
v, 1 0 0 -1 0 -5/2  -1/2
v, =] 2 0 0 0wl 9 1
xg=| 0 |-12 w2 52 - 0 0
xg=| 0 [-wv2 w2 a2 4 0 0

After 6 pivots, one returns to the same schema,

2.5, On dropping degeneracy precautions.

As is well known, it is customary in practice to ignore the
degeneracy problem in many mathematical programming schemes. Quadratic
programming is no exception. Here we wish to draw some attention to the
fact that occasionally this can be done with absolute confidence. To
this end, we consider the application of Keller's algorithm (minus

degeneracy precautions) to a special type of problem.

15
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Theorem 2. Keller's algorithm applied to the bisymmetric schema

1 Xy Y,
0 =] 2« cT —bT
Yr=|e D AT
X, = b -A E

fn which b > 0 and E {s positive definite, provided J ¥ ¢, uses

only in-pivots and out=-pivots.

Proof. Suppose J 1s vacuous. Let ys be the distinguished variable;
then X is the driving variable., Since J = ¢, R is the only
eligible blocking variable, If dss = Bys/Bx8 < 0, then . does not
block Xy The procedure terminates with € going to minus infinity.
If d_ > 0 then the in-pivot (ys, xa> brings about a bisymmetric
schema with J = (g} , I =171 - {8}, and E = ll/dss).

Thus, we may assume < ¥ ¢, Note that so long as E remains
positive definite, there will be no exchange pivots, for these come about
when some xt blocks an Xg and th/&\yt = ett = (0. Now clearly an
out=pivot (xt. yt) preserves the positive definiteness of E unless

J/ = {t}. Under the action of an in-pivot (ys, xa) . E 1is replaced

by a principal transform of the positive definite matriy

Hence E will be positive definite when it is nonvacuous. 0

16




Corollary. Under the assumptions of Theorem 2, Keller's method

is finite.

Proof. If circling occurs in Keller's method there must be at least

two exchange-pivots, [

Remarks. Some related results should be mentioned in connection with
Theorem 2. In his Ph.D. thesis [10], Keller notes that his method
executes no exchange-pivots when D {is positive semi-definite and E
{s positive definite, but the discussion there is not related to the
degeneracy problem. Also, in Appendix I of | 5|, Cottle and Djang
observe that the symmetric van de Panne-Whinston algorithm [13] applied
to the least-2istance problem studied by Weife [10] does not require

a non-degeneracy assumption to assure its finiteness.

We have presented the application of Bland's double least-index
rule to Keller's method (and therefore implicitly to the van de Panne-
Whinston symmetric algorithm). There is reason to believe that such
a rule could apply to other algorithms, but we do not pursue this

possibility here.
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